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Abstract

Our recent paper [6] presented a model for thin plates with rapidly
varying thickness, distinguishing between thickness variation on a length

: scale longer than ("a < 1"), on the order of ("a = 1"), or shorter than

("a < 1") the mean thickness. We review the model here, and identify the

"a < 1" case as an asymptotic limit of the case "a = 1". We then present
’

a convergence theorem for the "a = 1" case, showing that the model correctly

represents the solution of the equations of linear elasticity on the

three-dimensional plate domain, asymptotically as the mean thickness

tends to zero.
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1. Introduction

In [6) we presented a model for the bending of symmetric, linearly
elastic plates with rapidly varying thickness. The model distinguishes
between three cases, in which the thickness varies on a length‘seale longer
than ("a < 1"), on the order of ("a = 1"), or shorter than ("a > 1") the
mean thickness. (See §2B for the precise meaning of the parameter a.)

Our main goal in this paper is a convergence theorem for the "a = 1"
case, assuming that the thickness varies periodically and the plate edges
are clamped. The corresponding convergence result for flat, homogeneous
plates is well-known [8,9]. Caillerie has recently proved an analogous
result for flat plates with rapidly varying composition {2,3]; his method
does not, however, extend readily to the problem treated here.

We begin, in sections 2 and 3, with a review of the model. The vertical

midplane displacement satisfies, in each case, a fourth-order equation

( d_.w) = F ;

3,8 Magys 2y6”

the formula for the effective rigidity tensor Ma differs, however, in

Bys
the three cases. Proposition 3.1 identifies the "a < 1" effective rigidity
as an asymptotic limit of the "a = 1" case. It is possible, at least
formaiiy, to obtain the "a > 1" effective rigidity from the "a = 1" case

as the opposite limit, in which the horizontal scale of the cell be-

comes small. To make this analysis rigorous one seems to need regularity
assumptions, the validity of which are not obvious in any interesting
cases. Though this analysis is not included in the present paper, we

mention it here, in connection with Proposition 3.1, as an indication that

the case "a = 1" - when the period is comparable to the mean thickness -

is in a certain weak sense universal.




Sections 4-6 present the convergence proof. Our principal tools are

two integral inequalities, an "averaging lemma'", and lots of integration
by parts.

The first integral estimate, Proposition 4.1, is a Korn-type inequality,
in which the dependence of the "constant" on thickness is made explicit.

The second estimate, Proposition 4.2, asserts a weak form of Kirchhoff's
hypothesis for any displacement field which obeys certain symmetries.

Our "averaging lemma', Proposition 5.1, amounts to an estimate for the
work done by a vertical, locally equilibrated load. We call it an averaging
lemma because it is used in the convergence argument to replace oscillatory
expressions by their local averages, modulo error terms.

The main convergence argument, given in section 6, proceeds very

€

straightforwardly: we simply estimate thg energy of gf— u €

» where u
solves the equations of three-~dimensional linear elasticity, and gf is an
ansatz motivated by formal asymptotic expansion. The main result, Theorem 6.1,
is thus one of convergence in energy on an e¢-dependent domain. The conver-
gence of the mean vertical displacement, in a weighted Lz-norm on the mid-
plane, follows as a corollary.

The convergence analysis presented here applies only to the case "a = 1",
and only to plates with periodic thickness variation and clamped edges. The
method appears, however, to be rather more general. We believe it could be
applied with other boundary conditions at the plate edge, and with plates
whose thickness is "locally periodic" or "quasiperiodic" in the sense of
[6). An analysis of the cases "a < 1" and "a > 1" could perhaps be done
following a similar outline.

Structural engineers are interested in plates of the type studied

here, because they may be stronger per unit weight than uniform or slowly
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varying ones, in certain design contexts. Some references to the literature
on structural optimization can be found in [6]. It is natural to ask which
scaling ~a <1, a=1, or a>1 - produces the strongeét structure: wve
hope to address this issue in a forthcoming paper.

We acknowledge with pleasure advice from George Papanicolaou on aspects

of this project.




2. Preliminaries

We shall write x = (xl,xz,x3) for vectors in 'R3 and x = (xl,xz)

| for vectors in IRZ . Integer latin indices will range from 1 to 3, and Greek ones

J from 1 to 2; the summation convention applies whenever indices are repeated

‘ 2
; We write 3, = a/axi and aij 3 /axiaxj .

2A. Constitutive laws

Associated with any displacement u = (ul,uz,u3) of ‘R? is its linear

. strain tensor
(2.1) e, () = 1(3,u+3.u,)
ij = 2371 1]
and the corresponding stress tensor
(2.2) oij(g) = Bijktekl(g) .

The fourth-order tensor Bijkl satisfies

Biyke = Byaxe = Bigex = Bresy

we assume that the elastic energy

Biike ®13 ke

is positive definite on symmetric tensors.

We shall always assume that the horizontal planes are planes of

e S
.

elastic symmetry; this means {[7]

Bugy3 = 00 Ba3zz = 0 -

Finally, we define a positive definite fourth-order tensor

o e




2B. Plate geometry

The plate geometry is determined by

(2.4a) a smoothly bounded domain Q in the x, - Xy plane,

1

representing the midplane;

(2.4b) a real parameter a, 0 < a < » , determining the

length scale of the thickness variation, and

(2.4¢) a bounded function h(n) 3z 0 , defined for any
n EIRZ and periodic in N with period L; .

a=1,2.
The three~dimensional region occupied by the plate is

R(e) = {x : x €Q, |x3| < eh(g/ea)} H
R(e) denotes its natural periodic extension

(2.5) R(e) = {x : x er?, %, < eh(x/e?)} .

We assume throughout that R(e) 1is a connected, Cz’“ domain, for some

H5lder exponent a > O . The function h may nonetheless have discontinuities -
i.e. parts of 3R(e) may be vertical; and h may vanish on a set of

positive measure - i.e. our plates may have holes. (In section 3D, where

we study an asymptotic limit of the a = 1 case, we shall impose additional
smoothness assumptions on h.)

We denote by aOR(e) the outer edge of the plate,




BOR(e) = {x : x €230, |x3| < eh(}/ea) ;

3+R(c) and 3 _R(e) are the remaining parts of 3R(e) above and below
Q , respectively; _ge is the outward unit normal to 3R(e).

When, in the following, we call a function "periodic in n " we shall
always mean that it has the same periods E = (Ll’LZ) as h . It will
often be necessary to average a periodic function f(n) with respect to

n:

-~

L, (L

1 1 2

Mf = ———-'J I f(n)dn dn, .
Lo Jo R

We shall use the norm

el ([ teffe)

The same notation will be used for tensors, in which case |g|2 denotes

the sum of the squares of the components.

2C. Loads and equations of equilibrium

The following disucssion applies for a = 1; when a # 1, it is more
natural to work with the load per unit projected surface area, see [6].
We suppose that the plate s loaded along its faces 8+R(e) by forces

53(0,0,f(§;5/e)) per unit surface area, and that the body force is

eZ(O,O,F(§;§/c)) per unit volume, where

(2.6) f(x;n) and F(x;n) are bounded, periodic in

n , and even with respect to n3 .

The equations of elastostatic equilibrium for the clamped, e€-~dependent,

three-dimensional plate are

D
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(2.8) (WE)vE {0 .2 on 3 R(e)
) u 3 N

13 3

(2.9) w= 0 on 3,R(e) . §

This scaling of the loads ensures that EF stays bounded as € » 0 .

Notice that

€ € € .
(2.10) u,,u, are odd ; u, is even
oe oe are odd € is even
aB’ 33 i %3

with respect to ny , as a consequence of (2.6); XE will denote the space

of all admissible displacements that obey these symmetries:

El 0o ; u;,u, are

3gRCe) ~

(2.11) X = 3u €H (R(E)) ,
odd and u, is even in Xq

vhere HI(R(E)) is the space of (vector-valued) functions with square-
integrable first derivatives.
The restriction to even loads is merely a matter of technical convenience.

If F and f are odd in Ny > then the solution of (2.7)-(2.9) satisfies

(2.12) ||e(g?)||2 ¢ € 57/2 .

gy

In case IV§| 2¢>0 on 8+R(s) (1.e. 8+R(e) has no vertical parts),

one can prove (2.12) by taking the inner product of gf with (2.7),

Nennboamu it 2 ” < e i



integrating by parts, and using a Poincaré inequality on each vertical line.

The proof in the general case is similar, but it requires the methods of

section 4. We shall show here that for even loads

€ 3/2

(2.13) | e(g)l|2’6~e ,

wherever the "mean load" is nonzero. Since the problem is linear, any load
can be decomposed into its even and odd components; by (2.12) and (2.13),

the even part is the one that produces the dominant strain.




3. Review of the model

-The model presented in [6] provides the initial terms of an asymptotic
expansion for the displacement vector, and - most importantly -~ an equation
for the limiting vertical displacement of the midplane. This equation has

in each case the form

(3.1)

( wy =F ,

3.8 Mapys 2ys

where F = F(F,f)(§) is the rescaled mean vertical load (see (5.1) for the
precise definition of F when a =1; for a# 1 see [6]). The tensor

Maﬁyé represents the "effective rigidity" of the plate; it satisfies the

usual symmetries

MuByG = MBayé = MaBGy = MyGaB ’

and it is positive definite in the sense that

2
Yogys Sag Eys 2 © €l

for symmetric tensors gaS . The formula for MaByG depends on whether
a>1,a=1, 0or a<1; in each case it is determined by h through

the solution of certain "cell problems" with periodic boundary conditions.

3A. The case a < 1.

2 L L
Let Hier( Il [—-22 . 7“-]) denote the set of functions which are
a=1

periodic with period L = (Ll,Lz) , with square integrable derivativesof

order < 2 . The auxiliary functions ¢GB(D) are in this space, and are

characterized (modulo a constant) by
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2 2 2 2
3- 9 af ) 3- 3 1 )
(3.2) M[h B ¢ up] = - M[h B W(—ﬂ n )———-—-—-— w]
$ 3 9 é 3
y8po ar\y "5 npano yépo any n‘5 2 aB anpanc
2 2 La Lu
V‘;’Gﬂper azl T2 07 ) )
The tensor MaByé is

2
2, 3~ ] aB. 1 3 vé, 1
(3.3) MaByG M[Eh B)\upo Bnkanu (¢ + E“a"e) anpano (4’ + 7‘7"5)]

2
- ul&3: 2, 3~ 3 Y8
M[-ffh BaBys] + “[’3*‘ Bquc anpano ¢ }

The lowest order terms in the displacement vector are

u: = - x33yw - eax3 3-?]-; (¢GB)3qu - £2ax38Y(¢aBaan)

(3.4)
s+ e2.a¢czBa v +—1-(x )2 B33‘{6 32 (¢a8+ ’1'1\ n )a v
3 af 273 Bii33 anYBnG 2°a 8/ aB

where w solves (3.1), with the appropriate boundary condition. The

right side of (3.4) must be evaluated at p = ;c/ca after differentiation.

3B. The case a = 1,

For any function ¢(n) we define

9¢ 3¢
P S SIS §
(3.5) Eij(i) Z(an * )
3 i
and




11
(3.6) Zij(g) = Byjke Be® -

Let Q denote the rescaled period cell determined by h ,

L
a .
3.7) Q= {n: |na| <5 |n3| < h(pd} ;

and let Iés denote the vector

B 2
o8 _ (. 3 (1 ) a(l )1 1258335 3 (1 ))
(3.8) T ( "3 9n, (T‘a“e)’ "3 3n, \2%"8 )" 2" T 2" Byyzy O 2N \20a"B))

The auxiliary functions Q?B € HI(Q) are periodic in n , and they satisfy
af - af
(3.9) [Zij(g JE;; (Wdn = [ Zij(g JE; 5 (Wdn
Q Q

for any y € Hl(Q) which is periodic in n . The tensor Ma8Y6 is given
by

| af, .af v8, .vd
(3.10) P L, quij(i +r )Eij(i 4T )dn

_ oyl 2, 33 _ 1 - Y$
- M[ih BaBYG] L,L, f Q"3BuBAuEAu(9- dp

The lowest order terms in the displacement vector are

* 2 af |
u = - x33Yw + € ¢Y (g/e)aan |
(3.11)
B
* 1 2 "33a8 2 aB
uy =+ 2(x3) 33;;; acBw +e7¢, (§/e)aaew .




3C. The case a > 1.

We define a tensor Cijkl. » for use in this section only, by

Ca383 ™ ©3a83 = Ca33g ™ C3q38 = ©

Cijld = Bijkl. otherwise.

For any function ¢(n) , i(_&) will denote the associated '"stress",
(3.12) zij (_Q) = Cijk£ Ekz(_ﬁ) .

Let Q and _[‘_aB be as in (3.7), (3.8), and let VY be the space of

functions y € L2(Q) such that

¥ 1is periodic in n , L2 depends only on na and

[ B <~

When a > 1 , the auxiliary functions _QGB are in Y , and they satisfy

T af . af
(3.13) | IQ Zij (¢7)E;, (g )dn = - JQ zn (T, (¥ dn

for every ¢ € Y . The tensor Ma. is given by

By$

1

(3.14) M -
aByé L1L2

[ Zij(fsﬂae) Eij(_g*“q"‘s)dg ,
Q

and the lowest order terms in the displacement vector are




14+a aB

uY = - x33Yw + € ¢Y aan
(3.15)
B
* 1 2 "33aB 2. aB
u, = w4+ >(x,) =7/ 093 wH+ecd, 9 W .
3 273 33333 af 3 "aB

The right hand side of (3.15) is evaluated at n = (1(/8a ,x3/e) .
In [6) we wrote (3.13)-(3.15) in a sli~htly different form, to emphasize
the connection with homogenization of a rough surface. The functions

gus(n3) . Qas(n) , and @33(n) used in [6] correspond to the decomposition

B
4P =%y -3 n, ? -———sz‘;‘;
(3.16)
aB aB agas 33
¢Y (n) = - n3wY (n) + an, (n3) 'WY (n) .

One can characterize Qij(-,n3) as the solutions of certain cell problems
on the horizontal slices of Q ; gaB(n3) may be expressed in terms of

certain averages of gij .

3D. An asymptotic limit of the case a = 1.

For a given periodic function h(n) , let M:;ia be the effective rigidity
1,5

of the associated "a < 1" plate defined by (3.3). Let MuByG

effective rigidity of the "a = 1" plate with thickness variation

denote the

h, (n) = h(n/s) 0 <8 <=

i.e., Mié:& is as defined by (3.10) with h replaced by hA . We sghow

here that Hl’A > Ma<1 as 4+ , if h 1is smooth enough; the proof is

similar to Nordgren's convergence argument [9]. A related result in the




e ey

context of Laplace's equation may be found in [2].

Proposition 3.1: If h 3¢ >0 s smooth enough then

8 _ \ac<l
(3.16) in Miges = Magys -
Proof:
Let Q:B denote the solution of (3.9) with h replaced by h, ,

which is periodic with period 4L . We introduce the rescaled variables

| - _]_-_ - v _
(3.17) n=E Ny, (e=1,2) , Ny = N3,
which range over the 4-independent cell
L. LI ' ._]_-_ = . [ '
(3.18) Q {n' : |"a| <5l »a=1,23 |n3| < h(p"}

and note that
awy  dw
1 (o, _'8B

Ew® = 75 (ané * 30 )

1 M3 12

(3.19) Ea3® = 25 5a * 2 on;

3w3

E33(_‘k) = 3“5

Let wnﬁ(g') be the solution of (3.2) with thickness h(n') , and define




SRR S

| af af
(3.20) ﬁs(n') = AZ(O!O'WQB) + 6(‘“5 _3_4!__ - “5 . ,0)

[ ] » [}
anl 3n2
1, ,.2 B335 2%y°B
+ o’ol-z—(“3) B anlanl M
3333 Yy §

We shall show that

(3.21) lim f lE(2P-03%) [2dn* = 0,
s+ /Q° -
provided that
(3.22) wae(g') has bounded derivatives of order < 4 ,

which is true for sufficiently regular h . Assertion (3.16) follows

immediately from (3.21), since

1,6 - _1 aB . aB ¥8,  _vé '
(3.23) M(IM‘S = ——-——LILZ IQ' Zij(gs6 ) _Eij (94 +I )dg

and

1 af, . a v6, _y$ a<l
lim-—-—f (62%41°8 £, (gY%+1"%)dn’ = M .
pii M P Ligla*L) Eygeu i dn’ = Mg o

For fixed a and B , define a tensor Tij(n') as follows: for

y, § €{1,2},

. a2 aB

s - R v v,
Tys Bagys™3 ~ Byepo anton? ny

for y=1,2,




= = A g p—

3 aB

_-ufro22 s 3w
Ty3 "4 ‘{2[("3) h™(n )]Byépo an;an;ané

L3 g azw°5 . . 2 ]
aBys ané vyépo an an' Bné i

and T35 is the solution of
-971 9T
(3.24) -3;%3 -7 =
3 “Y
X - g2 <_ _ sh_sh _ = 22¢°F  an_an )
_— ' ! [ [
33 nifth("') afy$ anY an6 Yépo anpan0 anY 8n6
One verifies the consistency condition for (3.24),
h 2
J* 43 ot = 2471 (5 pdh_2h_ g 3 maﬁ L
L 1 ?
-h anY 3 aBys anY qu yépo anpan Y an‘S

by means of (3.2). A straightforward computation shows that

(3.25) aBy ~1
213 $384198) Ty YO,
and that
9T 2T
(3.26) 5;; Tij Y + —Sﬁg 0 in Q

2\1/2
1+|Vh| -1
1,,v, = | —=——) |8 o +1 =0 on 3,Q',

vwhere 3+Q’ are the hpper and lower faces of Q', and v' 1s the outward

unit vector normal to 3+Q'.

b A A
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Let x = 9_:3_ 128 ; using (3.9), (3.25), (3.26), and Green's formula,

we see that
(3.27) f L QOE,, (dn' = f ) (1:8+£°B) E . (x)dn'
g A Q' o1 15 (x2dn

-1
= | T .E . (dn' + 0 JEQ]| )
Jq. 371 2"

=0 lEll , ),
L7 (Q")

which implies (3.21).

e e o S st

o 7 7 Tt e T




4. Integral estimates

This section establishes certain integral inequalities for

u € HI(R(C)) . We consider only the case a =1, {i.e.

R(e) = {x: x €9, |x3| < eh(x/e)}

(see, however, Remark 4.2 at the end of the section). Our method is to
decompose R(e) into 0(&:—2) subdomaing, each with diameter of order ¢
and to apply Korn's inequality on each subdomain.

We begin by reviewing Korn's inequality on the unit-sized domatin
Lu
Q= {x: Ixal < /2, |x3[ < h(x)} .
R is the space of rigid motions,

Y € Re> 71(5) = cijxj + di , for some

d ER3 and some skew-symmetric
matrix c .

Vu denotes the (nonsymmetric) tensor ajui » and e(u) denotes the

1
(symmetric) strain tensor 2(33“1+31“3) .

Lemma 4.1: For any u € Hl(Q) there exists Yy € R such that

(4.1) [ [9¢u-v) | 2dx < ¢ f leCw Pdx
Q Q
and
2 2
(4.2) I lu~x|“dx < € I le(u) | “dx
Q Q

The constant C depends only on Q.

18

»




Proof: This follows, for any Lipschitz domain, from the results in [5]. [::l '

- i
Recall that R(e) 1is defined by (2.5). For each pair of integers i
(k,2) 1let sz = Rkl(e) denote the period cell centered around

(keLl,lst) .

L
= {x : [x,~keL | < - [x,~LeL, | < 2
Reg = 12 & Ixy=kely 7 [1¥pLel, 7

|x3| < eh(x/e)}

Rescaling (4.1) and (4.2) yields the following result.

Lemma 4.2: For any u € Hl£oc(§(a)) and any pair (k,£) there exists IFeé R
such that
(4.3) I IV(L:_-J_u)lzdgt~ sC I |e(g)|2d3t_
Riee Rt
and
(4.4) ! (g—lulzdg < ce? [ leuy | %dx .
R aYi

The constant C in (4.3), (4.4) depends only on h .

Let

Hl = My b

vhere 4 €R™ and SFL is a skew-symmetric matrix. Clearly




20

®.5) elolgkﬂ,l_skllZ . ezliku,z_iulz

<c I |1k+1'!'(§) _ 1u(§)|2dx2dx3

s C I (Ilk+1’£'2|2 + lB’Iulz)dxzdx3 ’

where the integrals are over the interface between ch and Rk+l 2

el
{x : x, = (k+¥5)eL1 R |x2—£cL2| < —52-, |x3| < eh(x/e)}.

One has the trace estimate (on any Lipschitz domain)

(4.6) I lu|?ds < c I (v ) 24wl Prdx

3Q Q
for all w € Hl(Q) . Rescaling (4.6), and combining the result with (4.5),
we obtain

€4 |£k+1,£_£k,£| EZlg_k+1,£_§_lo£|2

%.7) 2,

< C(e[ |v(_q-1k+1’£)lzd§ + et J Ig-xkﬂ'elzd.’s

Res1, 2 Riet1,2
+ef

A combination of (4.3), (4.4) and (4.7) gives

lV(!‘lu)(zdl‘. + et f I&-xulzdx_) .
Ree

2| AL K2 ke 2

(4.8) 4+ |d

ce? I |e(g)|2d§ .
Rer1 eV Riep

et et ettt dptig - TR - P L SRR i &

- e ——




Similarly, we have

(4.9) e? ls_k’ﬁﬂ-sMZ |2

"'lé_k’ZH"Qulz

-1

< Ce I fe(p_){zd_)i .

Ry, 041" Bep

Proposition 4.1: For any u ¢ Hl(R(e)) with u =0 on aoR(e) ,

-1
(4.10) Nall 5 o +llvall, (< ce™ e, -

Proof:

Extend u to R(e) by letting it be zero outside R(c) , and let

{131} be the rigid motions introduced in Lemma 4.2Z; notice that lkl

21

0

if R p NR(¢) =B . Let o(x) and &(x) denote the piecewise bilinear

interpolants to ng and QFZ , 1.e.
kL
aij(kcLl,ZeLz) = cyy
_ kL
Gi(keLl,leLz) = di , and

011(5) , Gi(g) are bilinear functions

cLl

1
on (§:|x1 - (k+%-)eL1| <5 Ixz - L+ f)EL2| <

for each pair of integers (k,f)

It is standard that

el
2

—2

?
!
|




J ) vs)2dx ¢ ¢ ] (L e i Faaceracs
R k, £

and an analogous inequality holds for flVg|2d§. 1t follows, using

(4.8)~(4.9), that
62 LR2 ‘lezdg + LRZ ‘V§l2d§ < ce ™t J |e(g)|2d§ .
R(e)

Since ¢ and § are compactly supported, we conclude by Poincaré's

inequality that

and hence

D21 1 o | lew s

(46.11)
k,2 R(¢e)

Since VIFL = EFL , (4.3) may be rewritten

vu-ct|2dx < C f lew |%dx »

L‘kz e

which leads immediately to

(4.12) lvu)?dx € C (f feqw Pdx + [ 63|£u|2> .
R(e) k,£

Similarly, since \xkz(l)l < C(|£F£|+IQF£1) for every x € R(e) , (4.4)

leads to

ey e .




(4.13) I lg\zdﬁ <C [62 J Ie(g)lzdi
R{¢) R(e)

vl g <ng‘°“12+|g‘°‘12>]
k,£

A combination of (4.11), (4.12) and (4.13) gives

J (Jul®+ vl Prdx ¢ ce™? J le(w |%dx
R(e) R(e)

which is equivalent to (4.10). l

Recall that the space X_ is defined by (2.11).

Proposition 4.2: For any u € XE .

2
(4.14) agl Hua+x330u3” 2,¢ < celle(w) | 2,¢

Proof: When u € X_ , one may choose the rigid motions 1}[ of Lemma 4.2

to have the same symmetry properties, i.e.

ke _
" =

2

d:ﬂ = ckz =0

(4.15) 12

for each k,£ . By (4.4) and (4.15),

] |ua—ct§x3|2d5 = I |ua-yt£|2d§
Rt

By (4.3), on the other hand,
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kL

2
37y 0 |

|

ke, 2
Iaau3-c3a| dx = f laa(u

Rt Rt

o lewids .

Rt

Kl k£ . .
Since |x3| < C¢ and C3a = - ca3 , this implies that
2 2 2
(4.16) I qu+x33au3l dx < Ce f le(u)|“dx .

Rt Rt

Adding (4.16) over all k,f and over o = 1,2 we get (4.14). I—_I

Remark 4.1
Inequalities (4.10) and (4.14) are sharp in their dependence on ¢ .
For (4.10), one sees thig by considering u = (—x331w,—x332w,w) , where
). For (4.14), one uses u = (0,0,w). l——l

w = w(xl,x2

Remark 4.2
The estimates in this section may be generalized considerably. We
assumed that u vanishes on 30R(€) to simplify its extension to R(c).

One verifies, with a little more effort, that Propositions 4.1 and 4.2

remain valid without this condition (modulo a rigid motion, in the case of . ‘
(4.10)). The argument presented here also works in the case a <1 ; it
applies, moreover, even if R(e) is only a Lipschitz domain; and the

periodicity of the domain is not essential,

The case a > 1 1is more subtle; we do not know nontrivial conditions
on h which assure (4.10) or (4.14) for that scaling. The methods of [1]

and [4] may be relevant in that case, '::l




5. An averaging lemma

Our attention remains restricted to the case a =1. Q denotes the

rescaled period cell (3.7); & is the mean thickness
6 = 2M{h] ;
and 3. Q is the "non-periodic" part of 3Q ,

L

- . a -
9,Q=23Q N {g.lnal< 7 » a=1,2} .

For any pair of functions G(x;n) and g(x;n) which are periodic in 1

-

we define

L,L

(5.1) F(G,g)(x) = L I Gdn + I gdA(g)}
12 Ulg 3.Q

(d8 denotes surface measure). Our goal is the following result.

Proposition 5.1: Suppose that G and g have derivatives in x of order

0
€ 2 which are C *®  and Cl‘“ in n uniformly in g’respectivell. Then

for any u € XE

(5.2) ” G(x;x/e)udx + ¢ f g(g;z/e)u3d6
R(e) R(e)

*

- et J F(G,g)(g)u3d5 < ce3/? He(u) ] 2.6 °
R(e) '€

The constant C depends on G, g , and h , but not on € .

The essence of Proposition 5.1 is the following: 1if F(G,g) =0 ,

and 1if !c solves




] 0 i=1,2
-9 (o, . (w)) = in R(¢)
VRS cZG i=3
C e 0 1=1,2
o, . (w)v, = on 3,R(e)
3= 'y 1=3 *
= 0 3.R(€)
w on 3,R(e) ,
then
(5.3) lewS ), < ce’/?
. —~ 2,e °© -

Indeed, if G and g are even in ny , one proves (5.3) by substituting
EF for EF in (5.2) and integrating by parts. If G and g are odd
then (5.3) is the same as (2.12).

Before beginning the proof, we introduce some more notation. Given

a pair G, g with F(G,g) = 0 , we say "¢ solves the cell problem

associated to G and g" if

(5.4) I Y. (QE (yg)dg=f Gy dn+f g, ds (n)
Q BT qQ 3 2,0 °

for every y € Hl(Q) which is n - periodic.

Recall that E($) and )(¢) are defined by (3.5) and (3.6). One verifies
easily that (5.4) has an r - periodic solution, unique up to a translation.

Since we have assumed that R(¢) 1is a C2,u domain,

(5.5) M@l g, < cdioll o +lell 4 o

All norms are on the rescaled period cell Q or the boundary 3+Q. The constant

C depends only on Q and not on x, which occurs in (5.4)-(5.5) as a

&




parameter. If we define h

(5.6) Ty " Zij(g;)(:_z;ye) , .

then (5.5) leads to

(5.7) begglla, o < e sn(llcll g o+ Hsly ) - {
’ x C ’ C ’ b

Proof of Proposition 5.1

It suffices to consider the case F(G,g) = 0 ; the general case will
follow by considering G' = G - e-lF(G,g) , g' =g -
Let ¢ solve the cell problem (5.4) associated to G and g ; let

T be as in (5.6); and let u € X . By Green's formula,

(5.8) f CUjdl +¢€ [ gquA
R(e) 3+R(c)
= € f —‘""ai z Uidﬁ + € I i j(U)dx ’
R(e) %8 18 R(e) M
{
where r z (¢) 1is evaluated at n = x/e¢ after differentia- ‘
*s “18 B is i
tion. Notice that —a—x-y- is the stress of the cell problem associated
ig
to —g%— and %g);_ 3 since the x -~ derivatives of G and g are assumed
Y i
CO,a and C1 ® in N, uniformly in x , !
) 1/2
(5.9) oy I My sce™™ .
g 18 ™

We estimate the various terms in (5.8) separately. First,

<

¢ cet 2 llewll, ,

(5.10) ” (u)dx
R(ey 113

o




-

i
¥
!
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by (5.7) and Hélder's inequality. Next,

d 1/2
(5.11) ” = Lol +x.3 udx| s Ce' 7 Ju +x,3 u.|]
R(e) axB aB "a "3 a3 a "3a 3" 2,¢
cce?? e,

by (5.9), H8lder's inequality, and Proposition 4.2. Finally,

) 3/2
(5.12) ” = ] .x.3 u.dx| < Ce {| vull
R(e) axB aB"3'a 3 2,¢

1/2
€

s¢C lleCw il , .

by (5.9), Hilder's inequality, and Proposition 4.1. Combining (5.10)-(5.12),

we conclude that the right side of (5.8) equals

[
3%~ ] ugdx + 0(e3/? ”e(E)||2,€) .

5.13
( ) - JR(E) B 38

At this point we need the following identity, which will be proved later:

3
(5.14) J =~ d
Q % “38

>
I
(]

axB

the cell problem associated to S%— Z and 0 , we conclude that
g8 3B

This means that F(—ji— Z s 0> = 0 . Repeating the above argument with
38

2 ]
(5.15) € I =) udx=ce¢ I —— . u.dx
R(e) X 3 R(c) ¥%g 383

+ 0 flewll, )

where I are the stresses associated to the new cell problem. (We use
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here our hypothesis on the second derivatives of G and g.) By H8lder's

inequality, Proposition 4.1, and the analogue of (5.9),

(5.16) lJ Zouqdx| < ce /2 “e(g)lb -

?
R(e) % 837

Combining (5.8), (5.13), (5.15), and (5.16), we obtain (5.2).

It remains to prove (5.14). Substituting y = (n3,0,0) into (5.4)

gives
J 231@)‘19 '—‘f Zij(i)Eij(E)dﬂ
Q Q
=0 .

Since Q 1is independent of x , it follows that

-~

2 5 4 ___3_[ Y. dn =
A n= . n=0.
[Q 8%, “31 ax; g 31

The corresponding assertion for 3%— 232 follows using y = (0,n3,0) s
2

and summation leads to (5.14). |

e e




6. Convergence

Let w solve

3 aGB(HuByéayéw) = F(F,f) in Q
|
t
' w = an = 0 on 23Q .
where M is defined by (3.10); 1let gf be as in (3.11); and let

aByd
EF solve the three dimensional elasticity problem (2.7)-(2.9). We shall
prove that gf—gf converges to zero in energy, and that w is really the
limiting vertical displacement. In addition to the regularity hypotheses

on © and R(e) , formulated in section 2, we must assume that

(6.1) All x-derivatives of order ¢ 2 of F and f
0
are €% and Cl’Ol in n , respectively

(uniformly in x ).

By [6], Ma is positive definite; it follows that

By$

(6.2) w has bounded x-derivatives of order < 6 .

Let 1tg(t) € Cl(O,m) with z(t) =0 for t £1/2 and «¢(t) =1 for

t 21 ; we define

 (x = (e taist(x,30)) for x €0,

and

i
(6.3) u = (—x331w,-x382w,w)

B
2 "aB33 + £2 af

1 -
+ (0,0,5(x3) By123 ¢ (x/e))g -3

LA

b
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where Q?B is as in (3.9). Notice that E# € X

Since R(e) 1is assumed to be a c2,u domain, a standard regularity

result shows that 975 € C2 a(Q) . In particular the functions

9

¥$
Zij(i ) and any

L@

l,a

are C and CO’(x , respectively. We shall use this fact repeatedly,

sometimes without direct mention, in what follows.

Lemma 6.1: The functions E# R gf satisfy

(6.4) leu*-u") |l 2 e € ce? .

Proof:

af aB)

Since ¢ and Eij(i are bounded functions,

“ aB
I |VCC| ¢ (x/e) || 2, §C

I a-2 ™ e, , < ce

I a~t e e, , < ce .

The estimate (6.4) follows easily, using (6.2). ||

Lemma 6.2: For each B, y , §

(6.5) I [38(175)@ =0 .
Q

Proof:

One argues as in the proof of (5.14), using (3.9) instead of (5.4) |

e e
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Lemma 6.3. Let v denote the ouvtward unit vector normal to 3.Q . For §
eaich B, vy, 6 , the functiouns :
- - n 2 \E !
G(r) = = Ny o= g n €Q
a
g(n) = [-n%B . +n.J (6"%)1v n € 3,Q
- 3 aByS 3taB+ o * - +
satisfy
6.6) F(G,g) = 0 .
Proof:
By Green's formula,
2 Y6 - 2= A L) .
f Ny T gl dD f (-n3B g a*N3 Logle’ DIy ds
Q a 3,0
This is equivalent to (6.6). |_|
Lemma 6.4: Yor each a , 8 , y , &
(6.7) na 3 0 dn = | nB . E (8"%)d
: Q 3 Ces T T fg T3 aBaunw D -

Proof:

Substituting g = (0,0;%(n3)2) in (3.9), and noting that Z33(£YG) =0,

we see that

(6.8) f Ny Lq30¥0dn = 0 ;
Q

on the other hand,
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B
- Y8y vé, _ _a833 vy |
(6.9) BaanuEan (¥ Lagte B3333 Ly @

a combination of (6.8) and (6.9) yields 6.7).

One easily verifies that (3.9) is equivalent to

¥6 - n. B
{1j(g_ )vj = n3BiBySvB on aig . ;
t

If t© is defined by

= [-x_B vé
(6.10) Ty T SN L Zij(i Y (x/e))d oW

one computes that
B Y6
x.B +€ 218(1 )(§/5)138Y6w

(6.11) ajrij = | 3838v6

in R(¢) , and

€ _
(6.12) Tijvj = 0
on atB(c)-
y__GX ,

€

Proposition 6.1: For any

(dx = €267 [ FF,£) vqydx

(6.13)
R(e)

T e
IR(E) 1313

r o lle@ll 0 -




Proof:

By Green's formula and (6.12), )

(v)dx = - f 3, (v, v dx . g
IR(C) 1] i R(e) 1374

We apply Proposition 5.1, using (6.11), (6.5), and the fact that §38 s =0
Y

to see that |

5/2
C .
IR(E) 2 (typdvydx ¢ CT 0 llewall,

Writing V= T % I v

33,V + (va+x

3auv3) , and applying Proposition 4.2, we

obtain

= - d
JR(E) aj(TGj)vad5 JR(C) x33j(ruj)auv3 x

+ 0 (el , )

A combination of these results yields

(6.14) JR(E) (g Wdx = JR(S) %53, (r,)3 vydx

+ 0% flewll, )
We use Green's formula again:
(6.15) IR(C) %39 (1, )3 vadx = - jk(e) 333 (Tap) V3l




Now,

£ 2
x33j (Iuj)va = e (I+11) , with
i
!
1 - nzﬁ v 9 w |
37aBys a Q=2‘_/5 BydS ;
II = n, Z S(QY(S)\’ 88 g% o

and z
~ 9 . (t ) =¢Ill + 2 IV ith
Xy o3 Faj € € y W
) L)
I1I = - n, —/— (") 3, W,
3 8na af n=x/e By$
W= (2B . -n. 52876 3
N3Bagys™"3 Log'l ., PaBys
n=x/¢
By Lemma 6.3 and Proposition 5.1,
2 5/2
(6.16) € (III)v.dx + € (I+1I)v. ds = O(e Hew) |l .. D
3= 3 — N z,e
R(e) 9, R(e)

similarly, by Lemma 6.4, Proposition 5.1 and (3.10),

2 2 -1 712
(6.17) € J (IV)v.dx = 9 j M3 v.dx+ 0" “Jlew))] , ).
RCe) 3 R(ey OB asyé.w 3 2,¢e

Since MuByG is constant and w satisfies (3.1), (6.15)-(6.17) imply

2.-1 5/2
(6.18) J x,3,(1 )3 v.dx = €9 f F(F,f)v, dx + 0(e e ]| ).
R(e) >3 0 @) R(e) 3 2,¢




We are ready to prove the main result of this paper.

Theorem 6.1: The ansatz Ef , defined by (3.11), and the displacement u°

defined by (2.7)-(2.9), satisfy

<

(6.19) e a1, _ s ce” .

Proof:

We shall prove

bl

(6.20) He(g#-gf)llz . € ce?

4
with Ef as in (6.3). The estimate (6.19) is an immediate comnsequence,

using Lemma 6.1.

To prove (6.20), we first observe that
2
(6.21) o)), _ < ce

where 1 1is defined by (6.10). Indeed, a simple computation gives that

Ho(gf)—Tllz‘s < c/?

’ while by Lemma 6.1,

Ho(g_*)-a(y_#)H 2.c € ce? ;

(6.21) follows hy means of the triangle inequality.

By Proposition 6.1 and (6.21),

A combination of (6.14) and (6.18) yields (6.13). |—~W

b
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# 2 -1 2
(6.22) o . (u )ei_(x)d§ = ¢ o F'V3d§ + 0(c He(!)l|2 )
R(e) ) R(c) '€
for any v € XE . Also,
€ 2 3
6.23) I o, (u )ei,(x)d§ = ¢ J Fv3d§ + € J fv3db
R(c) ] R(e) 3,R(e)
= %ot J Fodx + 0Ce” flew) (|, )
R(¢) '€
by (2.7)-(2.9), Green's formula and Proposition 5.1. Taking v = gf_ge .
and subtracting (6.23) from (6.22), we conclude that
f P (0'-uMe, (w'-dx < ce? fle’-uO)| 9
R(e) H €
from which (6.20) follows. ||

Remark 6.1
Had we specified the e~dependent boundary condition

*
= u

BRO(E) =

€
u

BRO(C)

instead of (2.9) then the introduction of gf would not have been necessary.

*
The above argument yields HG(B,'EF)l‘Z c < Ces/z when EF is defined
this way. I
. * 3/2
One verifies readily that “9(2_)]|2 L ~E whenever F # 0 . 1t

follows, using (6.19), that

3/2

T e, |, s e

(6.24) C

—— "

o o i s e L
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with C depending en F but not on ¢ . A combination of (6.19) and

(6.24) yields the relative error estimate

* [
le™unll, |

——— - < cel’? i
€
llewHll, |
A similar argument, using (4.10), shows that j
Y * £ *
- Yu -V
N e A
€ €
” 1'2.8 ” Vu ”2’ 3
!
t
One may also compare u§ and w directly:
Corollary 6.1: If one defines
. 1 J+sh(x/€) c i
w (X)) = 5557 ) u_(x)dx %
2¢h(x/¢€) “eh(x/e) 3 3
wherever h(g/e) # 0, then
(6.25) (J o | %h (x/e)dn M2 ¢ cel/?
Q

Proof:

We consider w , w® to be defined on R(e) . By Poincaré's inequality

eh(x/e) eh(x/e) |

f N lwe~u§[2dx3 < ce? J ; ‘3%— u§|2dx3 f
-eh(x/¢€) -eh(x/€) 3

, [Fh(x/€) 2 J

= Ce f |e33(gf)| dxy 3 ]

-eh(x/¢€)

integration over Q yields
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J [ugmw6|2d§ < Ce? J Ie(gc)|2d§ < ce’ .
R(.) R(e)
One computes directly from (6.3) that

Iw-uglzdx < ce’ .

IR(C)
Combining these two estimates with (4.10) and (6.20), we conclude that

5/

2 + ”ug- < Ce

SN ol
R(e) 3% 2,¢

It follows that

J Iw—welzh(gle)dg = éL-I lw—welzdg < Ce . ||
Q € IR(e)

Remark 6.2: If h(p) >c¢c >0

, i.e. if the plate has no holes, then (6.25)

becomes

(J lw—w€|2d§)1/2 N CEI/Z . ||
fl
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